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Abstract. One interesting scenario in personal positioning involves an
energy-conscious mobile user who tries to obtain estimates about his po-
sitions with sufficiently high confidence while consuming as little battery
energy as possible. Besides obtaining estimates directly from a position
measuring device, the user can rely on extrapolative calculations based
on a user movement model and a known initial estimate. Because each
measuring probe usually incurs a substantially higher cost than the ex-
trapolative calculation, the objective is to minimize the overall cost of
the measurement probes.
Assuming that the user moves at a normally-distributed velocity, we
consider two scenarios which differ in the probing devices used. In the
first scenario, only one probing device is used. In this case, the aim is
to minimize the total number of probes required. In the second scenario,
two types of positioning devices are given, where one type of devices
offers a higher positioning precision, but also at a greater probing cost.
In this case, the aim is to choose an optimal combination of probes from
the two types of devices.
For both scenarios, we present algorithms for determining the minimum-
cost probing sequences. The algorithms are computationally efficient in
reducing the searching space of all possible probing sequences. Our ap-
proach is based on Kalman Filtering theory which allows to integrate
estimates obtained from the measurements and the extrapolative cal-
culations. The variances in the estimates can provably stay below the
specified level throughout the journey.
To the best of our knowledge, these results appear to be the first that
uses a mathematically rigorous approach to minimize the probing cost
while guaranteeing the quality of estimates in personal positioning.

1 Introduction

With the fast growth of personal mobile devices, people are developing diverse
methods to provide efficient and accurate positioning services which are useful
in many potentially interesting position-based applications, see e.g. Bhattachary
and Das [2] or D’Roza et al. [4].



Personal positioning refers to obtaining an estimate of a mobile user’s actual
position at a given point in time by using individualized means. Such estimates
are usually obtained either from measurements by using a positioning device
such as GPS (Global Positioning System), or, alternatively, through calculations
based on a predictive model of the user’s movements, stretching from an existing
estimate.

Naturally, due to inherent non-determinism in the user movements, the ex-
trapolative calculations accrue uncertainty over time, and a new probe will be
needed to control the uncertainty. Now because each measuring probe usually
incurs a substantially higher cost than the extrapolative calculation, the objec-
tive is to minimize the overall cost of the measurement probes over a journey
while keeping the uncertainties in any estimate below an acceptable level.

Although there are already many positioning algorithms based on GPS [5,
4, 8, 1] or cell ID of the base stations for mobile phones [2, 14, 13] separately,
there are very few existing results that combine positioning information obtained
from multiple types of positioning devices. Most cell-based positioning methods
consider only the concept of the logical positions instead of the geographical
positions, see, e.g. [2]. One naturally wonders whether information from multiple
sources can be combined to provide a cost-effective and consistent positioning
service. Elsewhere in [12], a system in which the positioning records from multiple
sources are merged for the analysis of a mobile device’s motion pattern was
described.

For lack of absolute knowledge about the actual position value, in this paper,
a positioning estimate is represented as a Gaussian distribution whose mean is
interpreted as the estimated position, and the variance as a measure of the
uncertainty of the estimate. With this formulation, we are able to make use of
Kalman Filter [6] to combine position estimates obtained from different sources.
The problem is now reduced to finding probing sequences that will minimize
the probing cost while keeping the variances 3 in the estimates below a required
level.

Assuming that the user moves at a normally-distributed velocity, we consider
two scenarios which differ in the probing devices used. In the first scenario, only
one probing device is used. In this case, the aim is to minimize the total number
of probes required. In the second scenario, two types of positioning devices are
given, where one type of devices offers a higher positioning precision, but also at
a greater probing cost. In this case, the aim is to choose an optimal combination
of probes from the two types of devices.

For both scenarios, we present computationally efficient algorithms that can
determine a required optimal probing sequence. The algorithms are based on
Kalman Filtering theory which allows to integrate estimates obtained from the
measurements and the extrapolative calculations. The variances in the estimates
can provably stay below the specified level throughout the journey.

3 Equivalently, standard deviations



To the best of our knowledge, these results appear to be the first that uses
a mathematically rigorous approach to minimize the probing cost while guaran-
teeing the quality of estimates in personal positioning.

The remainder of the paper is organized as follows. Section 2 presents the
formulation and notations. Our position inference method is presented in Section
3. Then we discuss how to control the variances of the inferred estimates in
Section 4. In Section 5 the optimal probing strategy with the minimum cost is
achieved. Section 6 introduces the previous work related to personal positioning.
Finally in Section 7 we summarize the results and conclude with open problems
for future work.

2 Definitions and assumptions

An estimate of the device’s actual position z will be modeled by a 2-D Gaussian
random variable written as

z ∼ N(µ, σ2 · I), (1)

where µ denotes its mean and σ2 ·I denotes its covariance matrix. By assump-
tion of Gaussian distribution, given a measurement z, the most likely estimate
of user’s actual position is µ. Moreover, the variance σ2 reflects how likely user’s
actual position is around the best estimate. The relationship between the region
of high probability and the variance is given by Theorem 0, as shown in [3].

Theorem 0. Confidence ellipse: Let x ∼ N(0, σ2
x), y ∼ N(0, σ2

y), and
x, y be independent of each other. The probability that (x, y) lies in the area
E = {(x, y) : x

2

σ2
x

+ y2

σ2
y
≤ r2} is given by P = 1− e−r2/2.

E is called P-confidence ellipse, which is centered around the mean. For our
case in which σx = σy = σ, the ellipse is a circle whose radius is given by rσ

where r =
√

2 ln 1
1−P . In practice, the confidence P is often set to be a constant

95%.

3 Position inference by using Kalman filter

A common scenario in personal positioning arises when the mobile user embarks
on a journey at a variable velocity, and he would like to ensure that during the
journey any estimate about his position can be made with a sufficiently low
variance. The position estimates may be obtained by carrying out a number of
measurement probes in conjunction with calculations based on the user velocity
model.

Kalman filtering [15] provides a convenient framework for describing mobile
user’s movement model and making predictions given the measurements. Since
Richard Kalman discovered it in 1960s, the Kalman filtering (KF) has been
widely used in many areas such as navigation, manufacturing, and dynamical



control etc. A Kalman filter is a recursive data processing algorithm that es-
timates the state of a noisy linear dynamic system. It processes all available
measurements to estimate the state, including both accurate and inaccurate
measurements. It uses knowledge of the system and sensor dynamics, probabilis-
tic descriptions of the system and measurement noises, and any available data
about the initial values of the state to achieve the estimate while minimizing the
mean squared error between the predicted value and the measured value. Here
we will adapt the formalism to suit our specific application.

Our aim is to infer the device’s position at any point within a period of time
T. Let ti denote the point in time where the i-th probe is carried out.

At time tk, the predicted position estimate xk, is given by

xk = xk−1 + τk−1vk−1 + τk−1wk−1, (2)

and a measurement, zk, is given by

zk = xk + rk, (3)

where vk = [vlon(k), vlat(k)]T denotes the velocity, and τk−1 = tk − tk−1. Specif-
ically, the velocity is obtained from the mobile user’s history statistically which
results in a noise wk. The random variables wk and rk represent the veloc-
ity noise and measurement noise, respectively. They are assumed to be white
noises4, normally-distributed and independent of each other.

wk ∼ N(0, σ2
wI), (4)

rk ∼ N(0, σ2
rk
I), (5)

In practice, the standard deviation of velocity noise σw might also change
with each time step. Here, however, we assume it to be a constant.

Using Kalman filter (KF for short), we can combine two (or more) estimates
that are obtained either from predictions or measurements. Given two concurrent
independent estimates, the KF method can combine them to generate a new
estimate; moreover, the new estimate is still Gaussian [15]. Theorem 1 states
this fact more precisely.

Theorem 1 (KF-1): Let N(µ, V1) and N(ν, V2) be x’s probability density
functions (PDF) conditional on two independent estimates respectively. Then
x’s PDF conditional on µ and ν is a Gaussian distribution N(x̂, V ) where

x̂ = µ+Q(ν − µ), (6)

V = V1 −Q · V1, (7)

and, in (7),
Q = V1(V1 + V2)−1. (8)

4 A white noise is a random signal with a flat power spectral density, i.e., the signal’s
power spectral density has equal power in any band, at any center frequency, having
a given bandwidth.



Fig. 1. The two ellipses centered at (1,1) and (5,5) respectively represent two concur-
rent measurements with the radii reflecting their standard deviations, i.e., σ1 = 2 and
σ2 = 1. By using KF-1, a new estimate can be obtained from merging the two pieces of
information, which is shown as the dotted circle, centered at (4.2,4.2) with σ = 0.89.

From Theorem KF-1, it can be shown that the variance of the resulting
estimate will decrease after merging the two estimates, i.e., the certainty on
the position estimate is improved with more position information. Specifically,
Figure-1 depicts two measurements indicating positions µ = (1, 1) and ν = (5, 5),
and their levels of uncertainty represented by the standard deviations are 2 and
1, respectively. Given two measurements, a new estimate indicates the position
(4.2,4.2) with a higher certainty (σ = 0.89). The estimated position is closer to
ν than to µ because the measurement ν is more certain than µ.

Theorem KF-2 below says that, unless new information is obtained from
measurements, the variance of an estimate derived purely from predictions will
degrade over time because of variations in velocity.

Theorem 2 (KF-2): Let N(xk, Vk) be the position of the object concerned
at the time tk. Assuming the probabilistic mobility model described in (2), the
position estimate N(xk+1, Vk+1) at the time tk+1 is given by

xk+1 = xk + τkvk, (9)

Vk+1 = Vk + τkVw. (10)

KF-1 and KF-2 together form the basis of our position inference method
which treats both the predictions and measurements uniformly and minimizes
the mean square error between prediction and measured position. The complete
position estimation algorithm is summarized as follows.



(1) Prediction update:

x̂−k = x̂k−1 + τk−1vk−1, (11)

V −k = Vk−1 + τk−1Vw. (12)

(2) Measurement update:

Kk = V −k (V −k + Vrk
)−1, (13)

x̂k = x̂−k +Kk(zk − x̂−k ), (14)

Vk = (I −Kk)V −k . (15)

4 Analysis of probing strategies

In this section, we will analyze several probing strategies. Here we will assume
that the cost of each probe is a constant.5

The first result in Section 4.1 concerns a simple strategy where the probes are
carried out periodically. We show that if the probes continue, the variance will
eventually converge towards a fixed point independent of the initial estimate.

The periodic probing, however, is not optimal in terms of probing cost. In-
tuitively, minimizing the probing cost implies maximizing the utility of a probe.
In other words, one should always delay the probe until the variance of an esti-
mate degrades to the threshold. The second result in Section 4.2 confirms this
intuition.

When two types of positioning devices are available, it turns out that all the
minimum-cost strategies are equivalent to one of two generic patterns. We then
prove that the optimal strategy can be found within a relatively small solution
space. Section 4.3 covers the details of the algorithm to find the optimal.

4.1 What happens if we carry out a probe periodically?

We will show that if the same type of probes are repeated at a regular time
interval, the standard deviation obtained in the positioning estimates will con-
verge to a finite value. In order to prove this result, we firstly introduce Lemma
3 below.

Lemma 3: Let f(x) = a√
1+ a2

x2+b2

, where a, b, x ≥ 0. Then the function

y = f(x) has the following properties:
1. y = f(x) is monotonically increasing, and ab√

a2+b2
≤ f(x) < a.

2. There exists a fixed point x∗ =
√
−b2+b

√
b2+4a2

2 , such that f(x∗) = x∗

3. Let fn+1(x) = f(fn(x)), f1(x) = f(x). For any x ≥ 0, fn(x) → x∗ when
n→∞.
5 The energy consumption of a measurement is intricately related to many device-

dependent factors such as the types of circuitry, memory access patterns, and com-
puting capabilities etc. Here we will simply assume that a probe entails a constant
amount of battery energy.



Proof. The result can be obtained by calculating the first- and second-order
derivatives of f(x).

Figure-2 shows the function f(x) mentioned in Lemma 3. Notice that f(
√

3) =√
3 in this example.

Fig. 2. The curve of function f(x) = a√
1+ a2

x2+b2

with a = 2, b = 3. Notice that x∗ =
√

3

and f(
√

3) =
√

3.

Let σ denote the threshold value of the standard deviation required for the
journey. Theorem 4 below determines the converging value of estimate of the
measurements are carried out at regular intervals.

Theorem 4: Let xk ∼ N(., σ2
k) be a discrete Kalman filter process defined

in Section 3. Assume that only one type of probes (σr) is carried out at the same
time interval (i.e., τ = tk − tk−1). Then for any initial estimate with standard
deviation σ0, the standard deviation of the estimate will converge to a finite
value:

lim
k→∞

σk = σ∗(τ, σr, σw).

Proof. Consider xk ∼ N(., σ2
k), the estimate at the time tk, and xk+1 ∼ N(., σ2

k+1),
the estimate at the time tk+1. The estimate xk+1 is calculated based on its im-
mediate previous estimate xk and the measurement z ∼ N(., σ2

rk+1
) carried out

at the time tk+1. Let τk = tk+1 − tk.
According to the prediction update equations (15) and (16), the standard

deviation, σt updated periodically is given by

σ2
t = σ2

k + τkσ
2
w.

Combining the latest estimate with the current measurement z, we have

1/σ2
k+1 = 1/σ2

t + 1/σ2
rk+1

.



σk+1 =
σrk+1√

1 +
σ2

rk+1

σ2
k
+σ2

wτk

. (16)

By assumption, σrk
≡ σr, τk ≡ τ . Let a = σr, b = σw

√
τ . Then σk+1 = f(σk),

where the function f(·) is as defined in Lemma 3. The result is immediately
obtained by applying Lemma 3, which completes the proof.

Corollary 5: Let σk, σrk
, τk, and σw be as defined in Theorem 4. Either (1)

σrk+1 ≤ σk, or (2) τk ≤ σ4
k

σ2
w(σ2

rk+1
−σ2

k
)

is a sufficient condition for σk+1 ≤ σk.

Proof. Let σk+1 ≤ σk in the equation (20) in the proof of Theorem 4. We have
the sufficient condition

σ2
w(tk+1 − tk) ∗ (σ2

rk+1
− σ2

k) ≤ σ4
k. (17)

If σrk+1 ≤ σk, the left hand side of the inequality (21) is less than or equal
to zero. Otherwise the condition (2) of Corollary 5 will imply the inequality (21)
above. This completes the proof.

Remarks
Corollary 5 reflects two requirements of the new probe. Firstly, when the new

probe itself has sufficiently low variance (i.e. φi+1 < σi ), the standard deviation
of the estimate at the next time step will not increase. Secondly, if the new
probe does not have sufficiently low variance, then the time elapsed before the
new probe must be a shorter period of time as is determined by Corollary 5. It
also suggests a strategy to choose a proper frequency to carry out new probes
periodically on a journey.

Corollary 6: Let σk, σw, σr = σrk
, and σ be as defined in Corollary 5. If

probes are carried out at regular time intervals, then the probing frequency must
be at least f = σ2

w(σ2
r−σ

2)
σ4 such that σk ≤ σ.

Proof. Let τk = 1/f, σk = σ. From Corollary 5 we have σk+1 ≤ σk ≤ σ. That
implies all the inferred standard deviations are within the threshold. This com-
pletes the proof.

Corollary 6 implies that, using the periodic probing strategy, the ratio of
frequencies of type-A probes to type-B probes should be proportional to σ2

a−σ
2

σ2
b
−σ2 .

Figure-3 shows the standard deviation of the estimate increases over time.
Without new measurements, the standard deviation will increase beyond the
threshold. A probe serves to bring down the standard deviation. With peri-
odically carried out probes, the uncertainty of the position estimates can be
controlled within the required threshold.



Fig. 3. The curve of the estimated σ over time t. Whenever the uncertainty of the
estimate increases to the threshold, a probe can bring it down.

4.2 When is best to carry out a probe?

For convenience, we call a time duration safe if within the period the variance
of any calculated positioning estimate stays below the required threshold value.
Firstly we will determine the longest safe duration with a given number of probes.
Let σ0 be the standard deviation of the initial estimate at t = 0, where σ0 ≤ σ.
Let τ be the length of the safe duration without new probes before the standard
deviation of any prediction reaches the threshold σ.

Lemma 7: By using only one probe σr at a point of time t ∈ [0, τ ], the safe
duration is longest only when the probe is carried out at the point t = τ .

Proof. By using only prediction update, at time t the standard deviation is given
by

σ1 =
√
σ2

0 + σ2
wt.

Combining σ1 with a new probe σr by KF-1, we can obtain a new estimate with
standard deviation

σ2 =

√
σ2

1σ
2
r

σ2
1 + σ2

r

.

With the new estimate, it is possible to obtain prediction update for another
duration t2 before the estimated standard deviation degrades to the threshold
σ, or, formally,

σ2 = σ2
2 + σ2

wt2.



So the total duration after inserting a new probe is

t+ t2 = σ2/σ2
w −

σ2
r/σ

2
w

1 + σ2
r

σ2
0+σ2

wt

+ t,

which is a function of t. Calculating its derivative on t shows that the overall
duration monotonically increases with regard to t, and the maximum value is
attained at the point t = τ . This completes the proof.

Remarks Lemma 7 states that the longest safe duration is achieved by doing
probes exactly at the end of a safe duration when the variance of the estimate
based on prediction updates reaches the threshold.

Corollary 8: Given the same initial estimate, the safe duration that can be
sustained via two simultaneous probes is shorter than that of two serial probes.

Proof. According to Lemma 7, the maximum valid duration is achieved only
when the new probe is carried out at the end of the first probe’s safe duration.

Corollary 8 implies that, to maximize the utility of a given number of probes,
carrying out the x probes sequentially will be more effective than carrying out the
x multiple probes simultaneously. In other words, the probes should be carried
out one at a time, each time exactly at the point when the variance of a prediction
based on the previous estimate is about to exceed the threshold.

4.3 What if two types of positioning devices are available?

From the foregoing discussions, we can determine the duration before the next
probe is carried out. We will present a min-cost variance-maintaining strategy
with two types of devices.

Let σ be a required threshold level of the positional variance. Let σa (resp.
σb) denote the standard deviation of an estimate from measurement offered by
type-A (resp. type-B) device, where σa < σb < σ. Let c and 1 denote the cost
for each type-A and type-B probe respectively, where c > 1.

Given a duration of time T , we will find the minimum-cost probing sequence
by determining the number of type-A probes and type-B probes required over
T .

Lemma 9: Any probing strategy with the minimum cost is equivalent to a
probing sequence in the following two forms:

A...AB...B,

or
B...BA...A.

Proof. Each of the probes in a min-cost probing sequence must extend a maxi-
mum safe duration, i.e. a probe will be carried out exactly at the point when the
variance of a predictive estimate reaches the threshold. Assume that a total of
d probes is required. Then the first d− 1 probes can be permuted in any order,
because the overall safe duration is still the same. This completes the proof.



Let τa denote the duration that one type-A probe can sustain until the stan-
dard deviation again degrades to the threshold σ, and, correspondingly, τb for
type-B. Let N1 = dT/τae, and N2 = dT/τbe.

Lemma 10: A minimum-cost probing sequence can be obtained by compar-
ing at most N1 +N2 candidate probing sequences.

Proof. Suppose that the best strategy is in the form A...AB...B in which there
are n1 As and n2 Bs. Obviously,

0 ≤ n1 ≤ N1, 0 ≤ n2 ≤ N2

In fact, when given a value of n1, n2 is given by n2 = dT−n1τa

τb
e.

So the total cost

C(n1) = cn1 + n2 = cn1 + dT − n1τa
τb

e

The min-cost sequence (n∗1, n
∗
2) is the one with minimal cost, i.e.

C(n∗1) = minn1C(n1),

which can be determined by evaluating each value of n1, where 1 ≤ n1 ≤ N1. A
min-cost probing strategy in the form B...BA...A can be determined by exam-
ining N2 cost values. A min-cost sequence can thus be determined by comparing
a total of N1 +N2 sequences, as claimed.

For example, let c = 2.4, τa = 2.2, τb = 1.0, T = 15.3. Then by calculating
cost for each pair (n1, n2), it shows that the minimum cost 15.8 is achieved when
n1 = 2 , i.e. via the strategy AAB...(11 Bs)...B.

Theorem 11: Let σ denote the standard deviation of the initial estimate.
The minimum-cost strategy can be determined by comparing at mostmin(N1, N2)
candidate strategies.

Proof. Let n1, n2 denote the number of type-A and type-B probes respectively.
Then the total cost is cn1 + n2. We will prove that the minimum-cost can be
achieved by strategies in both forms as claimed in Lemma 9.

Case 1: The optimal probing sequence is in the form A...AB...B. In this case,
we can check the pair (n1, n2), where n1 = 0, 1, ..., N1 and n2 = dT−n1τa

τb
e, to

obtain the best strategy (i∗1, j
∗
1 ). Let C∗1 denote the resulting minimum cost.

Case 2: The optimal probing sequence is in the form B...BA...A. In this case,
we can verify the pair (n1, n2), where n2 = 0, 1, ..., N2 and n1 = dT−n2τb

τa
e, to

obtain the best strategy (i∗2, j
∗
2 ). Let C∗2 denote the resulting minimum cost.

We will show that C∗1 = C∗2 .
From case 1 we have

j∗1 = dT − i
∗
1τa

τb
e,

which implies that

T − τai∗1
τb

≤ j∗1 <
T − τai∗1

τb
+ 1.



It can be rewritten as

i∗1 −
τb
τa

<
T − τbj∗1

τa
≤ i∗1,

which implies that

dT − τbj
∗
1

τa
e ≤ i∗1.

Let î = dT−j
∗
1 τb

τa
e, and ĵ = dT−τa î

τb
e. Then

î ≤ i∗1.

The strategy (̂i, ĵ) is one in the form of case 1. Let C1(̂i, ĵ) denote its cost.
Then

C1(̂i, ĵ) ≤ C∗1 .

From the definition of î, we have τaî+ τbj
∗
1 ≥ T , which results in

j∗1 ≥
T − τaî
τb

,

j∗1 ≥ ĵ.

As a result, it must be true that î = i∗1. Otherwise, if î < i∗1, then we have

C1(̂i, ĵ) < C∗1 ,

which means that, in case 1, (i∗1, j
∗
1 ) is not the minimum-cost strategy. So we

have proved î = i∗1, which implies (i∗1, j
∗
1 ) = (̂i, j∗1 ) is a feasible strategy solution

for case 2, resulting in
C∗1 ≥ C∗2 .

With a similar argument, we have

C∗2 ≥ C∗1 .

We conclude that
C∗1 = C∗2 .

The equality shows that the minimum-cost strategy can be found in either cases,
which completes the proof.

Remarks Given a journey and two specific types of probes, our method can
easily determine a minimum-cost probing sequence. Because our model of the
user allows for uncertainties in his move, a probe will generally yield a position
measurement that differs from the prediction. If this occurs, we may adaptively
recompute the best probing plan based on the latest estimate.



5 Related work

Basically personal positioning consists of two levels of understanding of mobile
user’s location. One is geographical positioning which provides accurate posi-
tion information such as GPS latitude-longitude. Another is logical positioning
which identifies meaningful landmarks (i.e., significant locations [1]), cell IDs
or IP addresses etc. Among those methods which support positionting services,
GPS is probably the most developed one and can attain the location within
3 ∼ 5 meter resolution[5]. However, GPS does not work well for indoor or ur-
ban environment. As an alternative, cell-based mobile positioning is becoming
popular [4, 14, 11]. When in the coverage area of cell tower, a mobile phone can
receive/send some information including the cell identification. Consequently, a
mobile user’s location may also be inferred from the cell probes though at much
lower resolution.

When heterogeneous position measurements are available, some data fusion
techniques are applied in order to create a good location inference. In [10], the
concept of hybrid predictor is proposed in order to use different methods in
parallel to improve the estimates. They use prediction models based on neural
networks, Bayesian model, and Markov model, and apply three hybrid predic-
tors: the warm-up predictor, the majority predictor, and the confidence pre-
dictor. In their experiments, the hybrid predictors shows a better prediction
performance than the average prediction of the individual basis methods. How-
ever, their approach treats the positioning data obtained from different sources
as mathematically-incoherent entities. Another widely-used technique to com-
bine multiple measurements is Kalman filtering [6]. Specifically [9] discusses the
application of Kalman filtering on robot localization problems. The robot’s loca-
tion is estimated by using several sensors which output location measurements.
For personal positioning, [7] proposes a method that integrates image data from
portable sensors by using Kalman filter.

6 Conclusions

We have presented a positioning inference method that can uniformly combine
multiple sources of positioning information for personal positioning. We have
also presented strategies for minimizing the probing cost while controlling the
variances of positioning estimates over a journey.

We envision that the method presented will be of use to personal positioning,
and hence it will be of great interest to evaluate it on real devices. A natural
extension of our current result may be to derive a power-efficient probing strategy
for multiple types of probing devices and verify the proposed algorithms on real
devices.
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